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ABSTRACT

This paper treats initial boundary value problems for first order
linear systems of partial differential equations which are singular in
time. Time singular systems are characterized by having some equations
in the system impose time invariant constraints while other equations
describe the time evolution of certain variables. The equations of
motion for an incompressible inviscid fluid are an example. They have
the constraint that the divergence of the velocities is zero, and the
remaining equations govern the time evolution of the velocities. We
treat both the Cauchy problem and the initial boundary value problem for
these systems. We show how many boundary conditions to specify as well
as a prescription to determine the well-posedness of the boundary conditions.
To prove well-posedness we use normal mode analysis and pseudo-differential
operators to obtain the necessary estimates. Examples of how to apply the

theory are presernted.

This report was prepared as a result of work performed at ICASE, NASA
Langley Research Center, Hampton, VA under NASA Contract No. NAS1-14101.



I. Introduction

In this paper we consider linear systems of partial differential

equations of the form

n
(1.1) Sw =) A.,w_ + Bw + F(t,x)

where S 1s a singular matrix. We consider the system (1.1) for t
+

positive and (x0,°'°,xn) in a sub-domain of RII l. The dependent

variable w 1is a vector of dimension k and each of the coefficient

matrices is a complex k X k matrix. We now define precisely what is

meant by a time-singular system.

Definition 1.1 The system of equations (1.1) is a time-singular

system 1if
a) S 1is a singular matrix of rank r > O,

b) the polynomial
(1.2) p(s,£) = det|Ss-1iA-E]|

has degree h in s for all values of £ in R® - {0},
and k - h = 2e, an even integer,

c) the roots s(§) of p(s,f) = 0 are purely imaginary for
£ e R™, and

d) there are smooth matrix functions P(£) and Q(£) such that

sIh - H(&) 0

P(E) (Ss-1A-E)Q(E) =
0 Ns + E(&)



where H(E) 1s a diagonal h X h matrix and E(§) and N are
lower triangular 2e X 2e matrices, N being strictly lower
triangular. Also P(£) and Q(£) along with their inverses are
bounded in norm, independent of &.

The lower order terms of equation (1.1) will be said to be

admissible if the polynomial
p(s,E) = det | Ss-iA*E - B

also has degree h in s for IEI > R for some value of R.

One way that time-singular systems arisg in applications is as
the 1limit of hyperbolic systems that have some very large characteris-
tic speeds. By taking the limit as the large speeds become infinite
one can obtain a time-singular system. Kreiss [4] has studied hyper-
bolic systems that have different characteristic speeds.

Time-singular systems have both a hyperbolic character and an
elliptic character. The integer h, giving the degree in s of the
polymial p(s,§) (equation (1.2)), is a measure of the hyperbolicity
of the system and the integer h-k 1is a measure of the ellipticity.

An example of a time-singular system is the following system of

differential equations

u, = au_ + buy + Py + cv + fl(t,x,y)
(1.3) v, = av, + bvy + py - cu + fz(t,x,y)
0 = u_ + vy + f3(t,x,yL




We have

s—iail-ibgz c igl
r(x,&) = det! -C s—-ic£1 -ibiz ic’)g
i&, i€, 0
= (s-1af;-1bE,) (E2+£2)
= p(s,&).
Also,
£y 1E] -£,/1¢] 0
P(E) = 0 0 1 :
£,/1€] £/ €] 0
[ &,/1¢l £,/1¢l 0
e(e) = {-g,/1¢l £,/ 1€ 0
0 0 1

For other examples of time-singular systems used in applications
we refer to Oliger and Sundstrom [8].

The above example is a linearized, constant coefficient model of the
equations for an inviscid, incompressible fluid. The equations for an
inviscid, incompressible fluid can be viewed as a limiting case of the more
general compressible inviscid flow equations, the limit being taken as the
sound speed becomes infinite.

Of course, in applications one is frequently interested in systems
with variable coefficients. However, whereas for manv types of differential

equations the results obtained for the case of constant coefficients extend



readily to the case of variable coefficients, for time-singular systems
of partial differential equations this is not the case. The effects of
variable coefficients can significantly alter the behavior of the whole
system. Similar behavior is described by Kreiss in [4]. As an example

we present the system.

u_ + 1.uy + a(vx+i vy) = fl(t,X,Y)

(1.4)

[

u + av + v - iv

¢ ¢ x y f,(t,x,y).

If the coefficient a is constant, then by changing to the variable
u' = u+ av, one easily sees that (1.3) is a time-singular system. How-
ever, if the coefficient a 1is variable, say a = bx, then the system

(1.4) is seen to be equivalent to the equation
' ' ' =
ug + (1/b)(uxx-+uyy ) f3(t,x,y) s

where u' = u+ av, and this is ill-posed as a Cauchy problem when b
is positive.

In spite of the above example, it appears that the methods developed
in this paper can be used to treat particular variable coefficient
problems. But at present these methods would have to be applied on a
case-by-case basis. The author conjectures that the results for the
constant coefficient anelastic system can be extended to the variable
coefficient systems that arise in fluid dynamics, (Oliger and Sundstrom
(81).

This paper is motivated by the desire to extend the results obtained
by Kreiss [3] and Agmon, Douglis, and Niremberg [1], for hyperbolic and
elliptic systems of equations to other initial boundary value problems,

particularly those that arise in fluid dynamics. Previously the author




extended the methods employed by Kreiss to incompletely parabolic systems,
(Strikwerda [10]). Incompletely parabolic systems arise in the study of
viscous compressible motion. This paper extends this theory to the study
of inviscid incompressible fluid motion. For a more general discussion of
initial boundary value problems of fluid dynamics we refer to Oliger and
Sundstrom [8].

As far as the author is aware of this is the only treatment of the
initial boundary value problem for general time-singular systems. The
Cauchy Problem for the non-linear inviscid incompressible flow equations
has been studied by numerous authors, see e.g. Milne-Thomson [6].

For a treatment of a particular initial boundary value problem for
an inviscid incompressible fluid see Judavi& [2].

We now outline the course of this paper. In the next section we
briefly develop a theory of time-singular pseudo-differential operators.
We then consider the Cauchy problem for time-singular systems and then
the initial boundary value problem. We show how many boundary conditions
must be applied and we present a procedure to determine if a set of boun-
dary conditions is well-posed. Finally, we consider a special important
case, the linearized constant coefficient, ideal fluid flow equations and

determine well-posed boundary conditions.

II. Time-Singular Pseudo-Differential Operators

In this section, we briefly develop a theory of time-singular
pseudo-differential operators. The theory will be analogous to the usual
theory of pseudo-differential operators and many of the results follow
immediately from the usual theory. Our presentation will follow Taylor

[11], also see Nirenberg [7] and Strikwerda [10].



We first define three classes of symbols of pseudo-differential

operators. For convenience we define

(Is!2 + IEIZ)é s

<s,&>

T ()

{s e C: Re s > n}

s will always be a complex number, s =n+ 1iT.

Also
Dx = (—iax ,°",—18xn)
0
where 3 = 8/8x , etc.
0 0
Definition 2.1 For m, q € R,

q . . © n_.on
1) ) is the set of functions p(x,£) in C (MR xM) such

that for all multi-indices o and PR there is a constant C. such

oy

)

that

- I
p3pfp(x, 0| < ¢ g <1859 e

2) Sp" is the set of functions p(t,x,s,£) in

Cm(lRt x R® x d%n) X mp) such that for all multi-indices a and B8

there is a constant Ca,a,b,B such that
a_o . b_B . m-b-|g!
; N ‘
[DtDXDTDgp(t,x,s,E)l < Ca,a,b,B <s,§

3) ss™9 {s the set of functions p(t,x,s,8) in
Coo(lRt x R x Cn(n) X Rr5 such that for all multi-indices o and 8
and all non-negative integers a and b there is a constant Ca,a,b,B
such that




b
D’[D p(t,X,Ssg)! i Ca,a,b,ﬁ

The Fourier transform of a function u(x) is

a(g) = (2m)"n/2 [ e 18 Xu(x) ax
R

and for a function u(t,x) its Laplace-Fourier transform is

0(s,8) = (2m)™M2 [ oTSELTEETX L 4y dedE .
R

We now define the corresponding pseudo-differential operators.

Definition 2.2 1f p(t,x,s,£) is in either Spm or Ss™?% for

some values of m and q then the pseudo-differential operator
p(t,x,at,Dx) is defined by

ifex st
& e

i(s,8)dr d€.

e
p(t,x,s,&)e
(o0

1
p(t,x,d_,D u(t,x) = ————— [ [
tox 2W_(2n)n/2 R "

p(t,x,at,Dx) is in PSpm or Pss™ Y if p(t,x,s,&) 1is in Spm or
Ssm’q,respectively. The operators PSs™ 9  are called time-singular
pseudo~differential operators and those in PSpm are called pseudo-
differential operators with the parameter n = Res.

If p(x,8) is in s then the pseudo-differential operator
p(X’Dx) is defined by

Px,DIu() =~ [ pixD)e @) a
X (ZW)“ RD

and p(x,D ) is in sy,



The theory of pseudo-differential operators in psd s developed
in Taylor [11] and also Nirenberg [7]. For operators in PSpn see
Strikwerda [10].

We will allow symbols to be matrices and we will say the matrix
is in, say PSm’q, if all its elements are in ps™ 9,

We now define several norms and function spaces which will be

used in the following sectioms.

lul2 = [ lace)|%<1,8>% qg,

£
N
"
—

[ lacs,e)%s,e> 2e1,e>29 ar ag,

n,m,q b
R n+l
where s =n + iT,
2 - 2 2 2
lul = [ [ |iGs,w]|° <s,w> Te1,w>?Y dt dw
n,m,q n =
R
where s =n+ it
Notice the norm |° applies to R® while I . ” applies to
n,m,q n,m,q
Rn+1-
We define the following function spaces
1Y = B4 RY) = {u(x) : Iulq < o}
m,q n+l .
Ln (IRt x R ) = {u(t,x) : “ u” n.m,q < w}
m,q n
R, X |R = : < @
Ly® (R < RY = {ue,y) = Juf <)




Note that

2 _ * —ant 2
| u | n,0,q - {) e IU(t)Iq dt

If U is 2 subspace of Lz’q, we say U has finite spatial

codimension if the spaces
u(t) = {u(t) : ueU}

. . . n .
have finite codimension in Hq(IR ) for almost every value of t in

R,.

For a vector w the transpose of w will be denoted w', and

will say that w 1is in a particular function space if each of its
components is in that function space,this slight ambiquity in nota-
tion should not cause any difficulty.

Note the following relations between the classes of pseudo-

differential operators.

psd c PSso’q, and

PSpIn c PSsm’o for m< 0 and n > e

Many of the results for time-singular pseudo-differential operators
follow from the corresponding results for pseudo-differential operators.

In particular, the formulae for adjoints and products are essentially the

m,q

same. If P(t,x,at,Dx) is in PSs then its adjoint P*(t,x,ét,Dx)

has the symbol P*(t,x,s,£) and has the asymptotic expansion

b 1 4
+
PH(t,x,5,E) " 2o e (RS

a >0 atal
a 0

fvives

where the prime on P' represents the matrix transpose.



my5q, .
Also if P € PSs and Q € PSs

. m +m). 4%,
P-Q 1is in PSs and has the symbol

M09z
then the composition

PeQ(t,x,8,£) glal+a

a
a

L 0®%) (0¥p*Q)
0 ala! & b
0

|v]vie—

The next theorem is not needed in the remainder of paper, but it
should be of use in extending the results of section 4 to variable co-
efficient systems.

Theorem 2.1 (Garding's Inequality for time-singular pseudo-differential
operators).

If P(t,x,d.,D) fis in Pss 2929 for ¢ > 0 and
P(t,x,s,8) = P(t,s,s,E)' > c0(<1,£>/<s,£>)2q then for each positive value
of € and r, there is a positive constant ci such that

2 € 2
| [ w ||

- N,-q,q-Tr

Re(w,P(t,x,Bt,Dx)w) z-(CO-E)llw"n,—q,q ¢,

- 2
And moreover, for no > 0 there exist a subspace U of Lan,_q such

(o}

that U has finite spatial codimension and there is a constant cb such

that for w din U

2

Re(w,P(t,x,at,Dx)w) 2 C(')“ w| Ns=q,q

Proof
Let § = <1,5~/<s,Z>. Since P = P' we have that for some constant

M the symbol

2a
4

Py(t,x,5E) = B(PH4P) - (c,me)8°0 + ms2dcq, g5t

1

is positive definite and bounded below by 5662q' Let BO(t’X’S’;) be

the positive square root of PO’ then we have

-10-




q < ¢ &Q
c;8% < By(t,x,5,8) < ¢ 8% .

Now define the symbols Pi’ Bi for 1 > 0 by

)(BO+,"',+B. + P

3(P+P*) = 629 4 (Bh#,e0 4B
(P+P%*) = (CO-E) 0 P51 1_1) i

and

BOBi + BiBO = Pi .

- -4 * - P
We have Pi’Bi € ss” 11 l,and B - Bi € ss It 1. For i > r, we have

the first inequality of the theoren.
For the second part of the theorem, we rewrite the first inequality

as

2 2
Re (w,Pw) > (co—e)llwllns_q,q - Ci I ol n,-q,q
r/2

where K 1is the operator with symbol <1,&>

. n .
Since K 1is compact as an operator on Hq( R), we can write K as

=K +F
K H H

where ]K,Uiq <1 and FU has finite rank. (See e.g. Liusternik and
Sobolev [5].)

Then taking U to be the kernel of Fu, where u is sufficiently
small, we have the second inequality of the theorem.

We also need the following definition for our subsequent work.

Definition 2.3 If N is a nilpotent operator on the finite dimensional
vector space Cn, there exists a basis so that the matrix of N has the

Jordan form,

-11-



where Ji is a ki X ki lower Jordan matrix, i.e. each element of Ji
is zero except for those elements immediately below the main diagonal. We

can assume that the integers ki satisfy

k, >k

> es e >
1 —_ ’ k’

— a

2

Let ell’ elZ’“.’elki’e2l’ e22’“.’e2k2’e3k3’...’eaka"{' be the Corresponding
basis. The rearranged Jordan form is that obtained by reordering the basis

in reverse lexiographic order

o.’e LI ] .

€11°%21°°" " 831°%12°" a2’

We also define the degree of the basis element eij as j-1. Note also

that we do not require that the non-zero elements of J, to be unity.

III. The Cauchy Problem for Time-Singular Systems

In this section we will show that the Cauchy Problem for time-singular
systems is well-posed. Since these systems exhibit the behavior of both
hyperbolic and elliptic systems, we will begin by changing to a set of
dependent variables in terms of which the equations split into a hyperbolic
system and a time-singular elliptic system.

Consider now the system of equations (1.1) and let P(§) and Q(&)
be as given in Definition 1.1. Since the lower order terms in equation (1.1)

are assume to be admissible, we can modify P({) and Q(£) so that

-12-




/ - v

Is - (&) 0
(3.1) P(&) (Ss-iA*&E-B)Q(&) =(
G(&) Ns+ E(£)

where H{E) is an hxh matrix, N and E(f{) are lower triangular
2e X h matrix. 1In addition, we assume that N 1is in rearranged
Jordan form, (Definition 2.3). Note,also by Definition 1.1, E(£)
is non-singular for !E[ > R, for some value of R, and G(E) 1is a
bounded function of E£.

Also we have H(E) and E(EZ) in Sl and G(&) in s0.

Now we operate on the system (1.1) on the left with the operator

P(D,), and define w by
w = Q(Dx)w
If we let w1 be the first h components of w and w2 be the

last 2e components, then we obtain the new system

1

1 1
3tw - H(Dx)w F (t,x)

2

N3 w2 + E(D )w> = -G(D )w’ + F
t X X

In the case of the system (1.2), note that w1 is essentially the
vorticity u.V - vy and w2 is essentially the divergence and the
pressure p.

The first equation in the system (3.2) is a system of hyperbolic
pseudo-differential equations and therefore we have the estimate (see

Taylor [10]).

: 2 v 12 e, 2
v (t)lquq(lw (0)|q+ é \F (i d).

-13-



In the m-norm this becomes

1y 2 el 12 =1 2
AN n,0,4 =N Cq(lw (O)Iq + e n,O,q)

We now consider the second equation in the system (3.2). Let

2 20 21 24,
w = (w W ’oocw )

where w2J consists of those components of w2 which have degree j
as determined by the rearranged Jordan form of N, (Definition 2.3).

Define the matrix TI(s,£) by

20 (21
W,

\l
ro? = w205 2,22 ... gd,2d

$ )

LN ] 6
where & = <1,£>/<s,E>. The operator E whose symbol is given by
= -1
E(s,§) = T(Ns-E(E)T

’

has all of its elements in PSs Moreover we can construct an

operator E(—) (Bt,Dx) in PSsO’_l, so that
i) (s, = EGs,©070 for  [E] > R
and

£$) (s,8)E(s,8)

IZe + KZ(S,E)

where K, € PSsO’—l. We then have

2

(=) 5p.2

(I+K2)Fw2 - £ Ere? = BT (Lol (e 1))

We thus obtain the estimate

2

1” 2
n,0,q+l

2
n.0, |

~2
+ || TF
gt .0,

y + || KIw? ]
q

where K 1is a compact operator on Hq+l.




Since K 1is compact, we can write K as Kﬁ + F€ where the

norm of KE is less than € and F2 has finite rank, (Linsternik

and Sobolev [4]). Therefore, by restricting sz to an appropriate
space of finite spatial codimension, and combining the above estimate

1
with the estimate for w we obtain

1
I

2
(3.3) nfl w | |

+
n,qu n909q+l

2

~2
+ ” I'r “ n,0,q

< c(|w1(0)|§ +||F )

s
n,0,q
We summarize the above computations in the following theorem.

Theorem 3.1 The Cauchy Problem for time-singular systems is well~-

posed in the sense that there exist subspaces Ll and L2 of Lg’q,

for q > 0, that have finite spatial codimension and for
W (0) € HY, e Lg’q and I € L
there is a unique solution w with
Le LO,q and sz €L
n 2

w

and the estimate (3.3) holds.

Iv. The Initial Boundary Value Problem

Consider the system (1.1) in the case where the coefficients are

. ' . a
constant and where § is the space JR, x IRR".

+ Rewriting (1.1) in the

n .
coordinates (t,x,y) where t >0, x >0, y ¢ R, we obtain
n

(4.1) Sw, = Agw, + ) AW+ Bw + F(t,x,y)
oy 3

-15-



On the boundary x = 0, there are boundary conditions

(4.2) Tw = g(t,y)
and, for simplicity, the initial condition will be
(4.3) w(0,x,y) =0 .

We assume that the boundary is non-characteristic, that is,

A0 is non-singular. We now re-write equation (4.1) as

1 . -1
Ay (Sw - jZl Ajwyj—Bw) + A F(t,x,y)

(4.4) W

M(at,Dy)w + F(t,x,y) .

We now examine the operator M(Bt,Dy). Let Ml(at,Dy) be the

first order operator part of M, i.e.

=1 .
My(3,.5D)) = Ay (83 - 1 ) Ajayj).

Definition 4.1 Let h_ and h+ be the number of negative and

positive roots, respectively, of the following equation in K,
(4.5) det |S-A0K| =0

Notice that by Definition 1.1 the roots of equation (4.5) are
real and that zero is a root of multiplicity 2e. We now consider again

the polynomial p(s,&) as defined in Definition 1.1. We write

(4.6) 0

p(s,\u) = detlss-on - 12 Ajwjl
J
h-1
Pre+1

h .
s pze(X,w) + s (A,W) + *°° + p2e+h(k’w)

where pm(X,w) is a homogeneous polynomial in (M\w) of degree m. We
now make another assumption that is often made in the study of elliptic

boundary value problems, see Agmon, Douglis, and Nirenberg [1].

-16-




Assumption 4.1 For each Wo # 0, the polynomial Pze(A,wO), as a

polynomial in )X, has exactly e roots with real part of ) positive.
Note that for n > 1, this assumption is automatically satisfied, see
Agmon, et al [1]. We also make an assumption that simplifies the hyper-

bolic boundary value problem, see Kreiss [3].

Assumption 4.2 The roots s(§) of p(s,8) = 0 are distinct for

lg] = 1.

This last assumption can be weakened but it makes the following result

easier to prove.

Theorem 4.1 The eigenvalues of the symbol Ml(s,w) depend on (s,w)
in the following manner:

1) For Res >0 and w € Rns{O}, there are h_ + e eigenvalues
with negative real part and h+ + e eigenvalues with positive real part.
2) For Res >0, |s| >a>0 and € > |w| >0 there are h
eigenvalues bounded away from zero in absolute value and 2e eigenvalues

A satisfying
clw| > |A] > c]w|] and

|ReA|

| v

5, ul

for some positve constants 61, C, and c.

3) For |w‘.2 a>0 and € >Res > 0 there are at least 2e
eigenvalues whose real parts are bounded away from zero, and the remaining

eigenvalues A satisfy

-17-



|Re Al > 6§, Re s
for some positive comnstant 62.
Proof If X 1is an eigenvalue of Ml(s,w) then

0 = det|A-M(s,w)| = det Aal -det|Ss-A-iAw| .

If A were purely imaginary and non-zero, then by Definition 1.1,

s must also be purely imaginary. So, if s has positive real part

then either A 1is zero or has non-zero real part. If, in addition to

s having positive real part, w 1is non-zero then Definition 1.1 shows
that A can not be zero. To determine the precise number of eigenvalues
with positive real part we will examine A(s,w) for ® near zero.

For w = 0, we have

Ak
0 = det|Ss-AA| = det|s-Aj " |5 .

So A = ks where K is satisfies equation (4.5), thus there are h_
eigenvalues with Re A < 0 and h_ eigenvalues with ReX > 0. To examine

the remaining 2e eigenvalues that vanish at w = 0, we set w = ew' where

|w'| = 1, and consider equation (4.6) as € tends to zero. Let X = €},
2e h 2e+1 h-1
= 'y = (N ' '
0= P(S,>\, w ) £ S pze(A s W ) + € P2e+1(>\ s W )
se e 2e+h ! ]
+ + € p2e+h(>\ sw') .

So, for € near zero, there are 2e eigenvalues given hy

n

A= ¢ 2T (A+0(g))

where )\'(w) satisfies pze(x'ox),w) = 0. This, by Assumption 4.1,
proves the first two parts of the theorem.

The third part of the theorem follows similarly from Assumption 4.2.

-18-




The eigenvalues of Ml(s,w) with negative real parts when
Re s> 0, correspond to that part of the solution of equation (4.1)
propagating into the region x > 0, and therefore the correct number

of boundary conditions should be h_ + e.

Assumption 4.3 There are exactly h_ + e 1linearly, independently

boundary conditions, that is the matrix T(t,y) has rank h_+ e

for all values of (t,y).

We must now define two types of eigensolutions. The existence of
eigensolutions for an initial boundary value problem indicates that the
problem is ill-posed. The eigensolutions represent a family of solutions
to the initial boundary value problem for which the norm of the solution

is not bounded by the data.

Definition 4.2 An eigensolution of hyperbolic type for the initial

boundary value problem (4.1) -~ (4.3) is a solution w(x,s,w) to the

ordinary differential equation

d

wve Ml(s,qu

satisfying

a) Res>0 , W#0

b) Tw(0,s,w) =0

c) For Res >0 , w(x,s,w) is bounded for x > 0, and

for Res 0 s, then

wix,s,w) = lim w(x,stc,w)
>0+

where for each €, w(x,s+€,w) - is a bounded solution on x > 0O of

d = _
el A Ml(s+€,w).

~19-



We need also to define elliptic eigensolutions. But before doing

:a 2
so we must define two auxiliary matrix functions M(w) and T(w).

Definition 4.3 The matrices M(..) and i(w) are defined by the

following procedure.

1. Let P(s,w) be a smooth nonsingular matrix function in a neighborhood

of w=0, |s|] =1, Res >0 so that

-1 11
M(s,w) = PMlP =

M22

is in lower triangular form and ﬂ22(1,0) is a nilpotent 2e X 2e matrix in

rearranged Jordan form and ﬁll is an h X h matrix.

2. Construct the 2e x 2e matrix M)

M22,ij(1’w) if di = dj
Mij(w) = or Mzz,ij(l,O)# 0
0 otherwise.

M .. 1s the element of M in the ith row and jth column, and
22,13 22

di is the degree of the ith basis element of ﬁ22)'

3. Let

T(s.) = Qus,0)T P (s = ] s F MW
2=0

where Qo(s,w) is a non-singular, smooth matrix function defined in a
neighborhood of w = 0, |s|_= 1, Res > 0. Qo(s,w) is somewhat arbitrary

but restricted by the condition in part 4.

4. Define the integers

_ o . €3
c; = max{dj 2 Tij (w) # 0}
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then the boundary operator T(w) is given by

T

:(2) ij (’,.J) if d. - 2 = C
T, (u) =
1]

J i

0 otherwise

Qo(s,w) is chosen so that the rank of i(w) is equal to the rank of

T, and Qo(s,m) = Q00 + 0(w/s) where is non-singular.

Qo

Definition 4.4 An eigensolution of elliptic type for the initial

boundary value problem 4.1 - 4.3 consists of a vector Vo and a

function wu(x,w) such that

1) v, is in the span of those eigenvectors of ﬁll(l’o) whose eigen-

0

values have negative real part.

2) u(x,w) 1is a solution to the ordinary differential equation

d IRV
x U M( W)u
where |w| =1, and u(x,w) is bounded for x > 0.

3) The vector w(w) = (vo,u(O,w))' satisfies
T(Www) = 0.

As in the Cauchy Problem the estimates we obtain will not be in terms
of the dependent variable w, but rather in variables which exhibit the
mixed hyperbolic and elliptic character of the equation (4.1). Let
y(s,w) be a smooth matrix in C+(0) x R™ such that each element of

U(s.w) is in 5s™ 9 for some m and gq, and
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ﬁl(syw) 0
%.7) U(s, )M, (s, )0(s,0) T =
M, (s ,0) M, (s,)

where ﬁl and ﬁz are lower triangular and of dimension h X h and

2e X 2e, respectively, and ﬁB(s,u) is zero for (w|_i £ <s,w>. Moreover,
we require that ﬁz(s,O) be nilpotent and in rearranged Jordan form,
(Definition 2.3), and for Imi > (1-€)<s,w> the eigenvalues of ﬁz(s,w)
are bounded away from the imaginary axis.

Such a matrix U exists because the reduction of a matrix to lower
triangular form can be made a smooth function of the matrix elements, and
the various conditions on ﬁz and ﬁ3 are easily seen to be possible in
the light of Theorem 4.1.

Let v be the first h components of Uw and let u be the last

2e components. In a way similar to the Cauchy Problem we define the matrix

I' by

Pu= (0,80t 6%u2, 00,88

where § = <1,w>/<s,w> and ul is the vector containing the components
of u which are of degree j as determined by the rearranged Jordan form

of MZ(S,O).

With these new dependent variables we rewrite (4.4) as

<
|

= M1 (Bt,Dy)v + Fl(t.x,y)
(4.8)

3 y F \
u M3 (Bt,Dy)v + M2 (Bt,Dy)u + Fz(t,x,y,

and the boundary condition becomes
QT(v,u)' = Qg(t,y)

where Q(Bt,Dy)v is a bounded operator given by
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Q(s,w) = f'QG(s,m)

where Qo(s,a) is as in Definition 4.3, and I' is a diagonal matrix

with

I,
ii

where ¢y is as in Definition 4.3.

We now give the main theorem of this sectiom.

Theorem 4.2 The initial boundary value problem (4.1) -~ (4.3) is
well-posed if and only if there are no eigensolutions of either hyper-
bolic or elliptic type. By well-posed we mean that the following

estimate holds

2 2 | 2
nlvll g g0t ITull 5 0,0+ 1V15 0,0 * 1Tul} 0,0

~

2

(4.9)
~2
0,0+ 1T 17 o o)

2 1 2
- f.C(Ilen’o,o + “ F ” n,o’o + ”rF

Note that the norms l.lvw 0.0 apply to the boundary x = 0, and the
k Sad ]
norms ” . “ n.0.0 apply to the interior, x > 0.

Before proving Theorem 4.2 we state the following theorem which will

be used to prove Theorem 4.2.

Theorem 4.3 There exists a hermitian matrix R(s,i) defined on
m+(0) < " such that
2 2
1) Re (w,R(s,w)M(s,ww) > n|v]® + (Jw|-c)|Tu]
l|2

2 |w,re)| < |v|?+ |ru)t+ cdf] + |re??)
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3) 1if there are no eigensolutions of either hyperbolic or elliptic

type then there exists a bounded matrix Q(s,@) such that
t 2 2
(w, (R+(QD) " (QD)IW) > cy(|v|"+ |Tu]

for some positive constant e

Proof of Theorem 4.2

Define the norm | by

+

le2 = [ [£0o]%ax
0

Then by Theorem 4.3, we have for w, a solution of (4.1-4.3),

vl 2+ ful Ira? < [ Re(w,RGs,0M(s, 0w

=Re [ (W,R(S,w)wx)dx - [ Re(w,RF)dx
0 0
=-3 (W,Rw)x=0 - j;) Re(w,RF )dx
< 2w - 3 e (v + [Tu@ ]
| , )
2 2 1
AR IR R It F

Now integrating with respect to T = Ims and w, we obtain the estimate
(4.9). Therefore, if there are no eigensolutions then the problem is
well-posed.

Suppose now that there were an eigensolution of hyperbolic type. Since

lw| +0, T>ce¢ Le and |Q(s,w) | z_cl(g) so we can ignore the operators
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kal

and Q. If w(x,s,w) 1is an eigensolution of hyperbolic type then by
using cut-off functions, one can easily show that there are solutions to
(4.1 - 4.3) with F and g arbitrarily small in norm and vet have
;win > 1. This shows (4.1 -4.3) to be ill-posed

Similarly, if there is an eigensolution of elliptic tyvpe, one can
construct solutions to (4.1 - 4.3) such that |w|n > 1, but |Fll’
iFFZI and |Qg| all are arbitrarily small. To. do this set s =1
and & = € wg- Then one can check that the condition that QTw can

be made arbitrarily small as € approaches zero, uwith :wfn > 1, is that

there be an eigensolution of elliptic type.

Proof of Theorem 4.3

The construction of the matrix R(s,w) for Res > 0 and
e > ¢ <s,w> is essentially the same as the construction in Kreiss [3],
(see also Ralston [9]). We only point out that for .| > € <s,w>
we can take Q = I and ignore I since edI < I' < I.

We now consider the case |w| < & <s,w>. We begin with the matrix

ﬁo(s,;) as given in equatioh (4.7). Since ﬁz(s.O) is in rearranged

Jordan form the matrix
M (s w)P_l = § (s,w)
27 27

has all of its off diagonal elements bounded by <1,.>. The eigenvalues
of ﬁz(s,d) are bounded by |w| according to Theorem 4.1. Let Ul(s,m)

be a nonsingular smooth function of (s,w) for |w|‘§ € <s,w>, such that

N 0
U1MzUI1 - (7
' 0 N_

wnere the eigenvalues of N+ have positive real part and those of N_
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have negative real part, in addition N+ and N_ are lower triangular.

Then there are matrices D and D_ such that

D, >0 , D <0 , and
Re(D,N,) > clle(lw]—co)

for some constants c1 and Cos ¢4 > 0.

Then Rz(s,w) is defined as

We then have ReR M, > ci('wl_CO)IZe’ Similarly, we can construct

Rl(s,m) so that

M >

and then R(s,w) 1is constructed as

R1 0

U*(s,w) U(s,w).

This proves the first inequality in Theorem 4.3. We also see that the
second inequality is satisfied. To establish the third part of the
theorem, note that from the above construction of R we have that
+ 2 + 2 _ 2 _2

(w, Rw) > c+(|v I+ w7 ) - ¢ (v | +HCTw7])

+ - . . .
where v , (resp. Vv ) 1is the projection of v on the subspace
generated by the eigenvectors of ﬁl having positive (resp. negative)

real parts. Similarly for (I"u)+ and (Tu) .
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Now, the condition that there are no eigensolutions is precisely

the condition that

2 2 2
lamw™| > c(vT] + [Tw ] )

for all (s,w), Res > n, for some choice of the positive constant C.

Therefore, we have

+.2 4.2 2 2
(w,Rw) > c+(]v | +|@w)"} ) - c_(Jv ] +|(Tu™| )
+.2 42 _ 2 _ 2 _ 2
> e, V| + MW -claw | + ]| + [(TwT|
2 2 2 2
> e, VI o# @] - clow] - forv’]
2 2 2 .2 2
> c'(]v+| +|(Fu)+| + v + I(Pu)-] - cfQTw|
2 2 2
> c'(|v| +[Fu| ) - c]QTw| s

which shows that the third inequality holds. This proves Theorem 4.3.

V. The Initial Boundary Value Problem for the Linearized Ideal Fluid
Equations

In this section we apply the results of the preceding section to a
particular set of equations that is similar to those that frequently arise
in applications. These equations are a constant coefficient version of the

ideal fluid equations.

(5.1) u, = -au - buy = Py + fl(t,x,y)
v, = —avx - bv&v - py + fz(t,x,y)
0 =

u + vy + f3(t,x,y)
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on the region x>0, y€ R, t > 0. The equations are essentially

the same as equation (1.3), therefore
p(s,8) = (€2+"2)(s+ia £ +ibEf.)
y l ‘72 51 32 .

We see that h =1 and e = 1, and the coefficients a and b must
be real. To determine how many boundary conditions are needed at the

boundary x = 0, we evaluate

1+ ax 0 <
det]S - AOKI = det 0 1+ ax 0 = —K2(1+aK)
K 0 0
Thus we see, by Definition 4.1 and Assumption 4.3, if a > 0 then h =1,
so we need two boundary conditions, and if a < 0, then h_ =0 and we

need only one boundary condition.
To check the boundary conditions we need to look for eigensolutions of
hyperbolic and elliptic type. A hyperbolic eigensolution will satisfy the

ordinary differential equation

v - s'/a 0 -i/a v
(5.2) u =1 - iw 0 0 u
P/, aiw -s' 0 p
where s' = s + ib w. Two solutions, which are linearly independent for
s' # |wla, are
~iw s'
— —a!
(5.3) | w e ol and iva Je ® xla
s'-a|w] 0

For elliptic eigensolutions, we set

v = v + (ptau)i./s' .
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[
=

u=u- p%!- (1+0(w/s")

Then equation (5.2) becomes

v -s'/a 0 0 v
u =1 1 Al 0 u
P/, ai -s' (1+y) AZ P
where A, = || (1#+0@/s")), A, = - |6] (1+0(w/s") and u = O(w/s")°.

Then an elliptic eigensolution satisfies the ordinary differential

equation

(5.4) =
P -s'  -lw]f\p

We now consider the boundary conditions themselves.
Case 1. a < 0. This corresponds to an outflow boundary. We need

one boundary condition, let it be

tju+ t,v+ £ap = g(t,y)

First we look for hyperbolic eigensolutions. The only possible eigen-

solution for a < 0, is

v -iw
o) = | lal )l
P s'-alo

and substituting this in the homogeneous boundary condition, we have
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tllwl + tz(-i.w) + t3(s'—a]w|) =0 .

1f ty # 0, then

s' = lw((a— tl/t3) + iw t2/t3

Since we want Res > 0O, and Res = Res', the condition for a hyper-

bolic eigensolution is

Re(a—tl/t3) + Im(t2/t3)

(We will allow for the ti to be complex for genmerality.) If t, = 0,

the condition for a hyperbolic eigensolution is

tl +it, =20 or t =0 .

2 115

Now we look for elliptic eigensolutions, (see Definition 4.4). Since

a < 0, we have 50 = 0 and from equation (5.4), u=0 and p = poe_lwlx.
Rewriting the boundary condition in terms of Vv, u, and p we have
w 2
3 5 - { ' = 0= w

£8 + £,V + (b5 + (tllw! t,iw/sHp = 0Qu+ () )p

If t, # 0, then the boundary condition is
t3p =0
and there is no elliptic eigensolution. If. t3 = 0, the boundary condition
is
(t,w - tyilwp =0 |

and this gives the same result as the hyperbolic eigensolution for t. = 0.
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solutions of either type when t, $ 0, if

(5.5) Re(a-tl/t3) + | 1Im t, /t3| <0

and when t3 =0, if

(5.6) t, + 1 t, #0 and

1 -1 t, # 0.

t

Case 2. a > 0. This corresponds to an inflow boundary. We need
two boundary conditions, and without loss of generality we can take

them to be

g (t,y)

2]

[
=
4
2]

N
<
I

g,(t,y).

We first look for hyperbolic eigensolutions. For s' # lw|a, the

general form of a hyperbolic eigensolution is

-iw s
a |w] e—Iwa + B iwa e"s'x/a .
s'-a|w] 0

Substituting this into the homogeneous boundary condition, we see that

the condition for an eigensolution to exist is that
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- I_ ]
‘wltl iu)tz + (s aAu))t3 iU)atl + s t2

0 = det

|w|r1 -iwr, iwar, + s'r2

= (s'-ahbl)(|w|(tlr2 - t,ry)) +ty(iwar, 4 s'ry))

If tsr, # 0, an eigensolution exists if
| - Re((tlrz - tyr)/egr,) 4+ [Im(a rl/rz)l_z 0,
if t3r2 = 0, an eigensolution exists if
tiTy - torg tia t3r1= 0
For the case when s' = aluﬂ , the general form of a hyperbolic

eigensolution is

i -iw 0
(a+BRx) ]wl e_I'le + 311 —|u|x
0 a

Substituting this in the homogeneous boundary condition, we arrive at

no additional restrictions.

We now look for elliptic eigensolutions. Transforming the boundary

' conditions, we have

2
£)0 4+ )7 + (tgt(eg |m] - 6,10/5Dp= 0T + 0D b
~ -~ ° ) 2
i ru o+ T,V o+ (rllwl - ryiw)/s")p= 0(%)5 + 0(%) p .
|
- -lwlx

We have by Definition 4.4, that v # 0, u=0, and p = Pye

, If ty # 0 the boundary condition is
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So for an eigensolution to exist we must have T, = 0. I1If t, =0,

the boundary condition is

1l
o

t,v + (tl'm'— t, i w)p

]
o

v + w|- i
r, (rllul r, i w)p
and for an eigensolution to exist we need to have

tlr2 - tzrl =0 .

Collecting the results for Case 2, we have that there are no

eigensolutions of either type if, when t, # O, then
3 1]

r, # 0, and
(5.7)

Re((tyr,-t,r )/t r,) - |Im(ar1/r2)| > 0
and for t3 = 0, then
(5.8) tlr2 - tzrl £ 0

Summarizing all this, we have the following theorem:
Theorem 5.1 For the equations 5.1, the boundary conditions give a

well-posed initial boundary value problem if and only if they are

equivalent to the following boundary conditions:
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For a < 0,

p + (a+c1)u + c,v = g(t,y)

(5.9) with
Re ¢; = |[Imc,| >0
or,
Clu + c2 v = g(t’Y)
(5.10) with
2 2
] + 0,

for a>0 |,

cu+ dp = gl(t,y)
ru+v = gz(t,y) .

(5.11)
with

Rec -~ ad|Imrl > 0 and d >0 .

Proof. By Theorem 4.2, the initial boundary value problem is
well-posed if and only if there are no eigensolutions of either hyper-
bolic or elliptic type. If a < 0, the conditions that no eigensolutions
exist are given by inequalities (5.5) and (5.6). If t3 # 0 then
without loss of generality, let t, = 1, then writing c

3

cp =t —a we have the boundarv condition (5.9). If ¢t

2 T tp»
3 = 0, then

inequality (5.6) gives the boundary condition, (5.10)
If a > 0, the conditions for no eigensolutions are inequalities
(5.7) and (5.8). 1If t3 = (0, then we can choose t2 =0, r, = 1 and

ty > 0, this is the boundary conditions (5.11) with d = 0. 1If ty 0,
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then also r, # 0, so without loss of generality we can choose ty > 0,

r, = 1, and t, = 0. Then (5.7) is the same as (5.11) with r = s

c = tl’ and t3 d.

We point out that a similar analysis shows that giving the normal
component of the velocity and the vorticity w = v~ uy at an inflow

boundary is a well-posed boundary condition. This boundary condition

is that given by Judovi& [2].

-35-



Bibliography

[1]

(2]

(3]

[4]

(5]

(6]

[7]

[8]

(10]

[11]

Agmon, S., Douglis, A., Nirenberg, L., Estimates nean the boundary
fon solutions of elliptic partial differential equations, 11,
Comm. Pure Appl. Math., Vel. 17, 1964, pp. 35-92.

Judovid, V. 1., A twe-dimensional problem of unsteady §Low of an
ideal incompressible fluid across a given domain, Amer. Math.
Soc. Translations, Vol. 57, pp. 277-304.

Kreiss, H.-0., Initial boundany value probLems gorn hyperbolic systems,
Comm. Pure Appl. Math., 22, 1970, pp. 277-298.

Kreiss, H.-0., Problems with difgerent time scales gon partial difgeren-
tiaf equations, Uppsala University, Department of Computer Science,
Report No. 75, June 1978.

Liusternik, L., Sobelev, V., Efements o4 functional analysdis,
Fredrick Ungar Publishing Company, New York, 1961.

Milne-Thomson, L. M., Theoretical Hydrodynamics, Fourth ed.,
Macmillan, New York, 1966.

Nirenberg, L., Pseudo-difgerential operatons, Proc. Symp. Pure
Math., 16, 1970, pp. 149-167.

Oliger, J., Sundstrom, A., Theoretical and practical aspects o4
some Andtial-boundary value problems in §Luid dynamics, Stanford
University, Computer Science Department Report STAN-CS-76-578, 1976.

Ralston, J. V., Note on a papetr o4 Kreiss, Comm. Pure Appl. Math.
24, 1971, pp. 759-762.

Strikwerda, J. C., Initiaf boundary value probLems f§or incompletely
parabolic systems, Comm. Pure Appl. Math., 30, 1977, pp. 797-822.

Taylor, M., Pseudo difgerential cperatorns, Lecture Notes in Mathematics,
No. 416, Springer-Verlag, New York, 1974.

-36-




